5846 measured reflections

 $R_{\rm int} = 0.032$

1408 independent reflections

1043 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1,4-Bis(4-nitrophenoxy)butane

Qi-Long Zhang,^a* You-Cai Zhao,^a Yun-Qian Zhang,^a Sai-Feng Xue^a and Zhu Tao^b

^aKey Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, People's Republic of China, and ^bInstitute of Applied Chemistry, Guizhou University, Guiyang 550025, People's Republic of China

Correspondence e-mail: sci.yqzhang@gzu.edu.cn

Received 14 November 2007; accepted 17 November 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.045; wR factor = 0.134; data-to-parameter ratio = 12.8.

In the crystal structure of the title compound, $C_{16}H_{16}N_2O_6$, the molecule is centrosymmetric. The two benzene rings are linked by a diether strand, forming a non-coplanar structure with a dihedral angle of 5.18 $(12)^{\circ}$ between the benzene ring and the central chain. The molecular packing is controlled by $C-H\cdots\pi$ interactions and $\pi-\pi$ stacking, with $Cg1 \cdots Cg1(1 - x, 1 - y, 1 - z)$ distance of 3.7687 (12) Å (Cg1 is the centroid of the benzene ring).

Related literature

For related literature, see: Day & Arnold (2000); Day et al. (2002); Freeman et al. (1981); Kim et al. (2000).

Experimental

Crystal data

C16H16N2O6 $M_r = 332.31$ Monoclinic, $P2_1/n$ a = 7.1273 (5) Å b = 8.7534 (7) Å c = 12.8912 (10) Å $\beta = 99.516 \ (6)^{\circ}$

 $V = 793.19 (10) \text{ Å}^3$ Z = 2Mo $K\alpha$ radiation $\mu = 0.11 \text{ mm}^{-1}$ T = 293 (2) K $0.23 \times 0.16 \times 0.11 \ \mathrm{mm}$

Data collection

```
Bruker SMART CCD area-detector
  diffractometer
Absorption correction: multi-scan
  (SADABS; Bruker, 2005)
  T_{\rm min} = 0.976, T_{\rm max} = 0.988
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.045$	110 parameters
$wR(F^2) = 0.134$	H-atom parameters constrained
S = 1.09	$\Delta \rho_{\rm max} = 0.16 \text{ e} \text{ Å}^{-3}$
1408 reflections	$\Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C1-C6 benzene ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C7 - H7B \cdots Cg1^{i}$	0.97	2.97	3.801 (2)	144
	. 1 1	. 1		

Symmetry code: (i) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

We acknowledge the support of the Natural Science Foundation of Guizhou, China (grant No. 20052011).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2492).

References

- Bruker (2002). SMART and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.
- Bruker (2005). SADABS. Version 1.22. Bruker AXS, Inc., Madison, Wisconsin, USA.
- Day, A. I. & Arnold, A. P. (2000). World Patent WO 0068232.
- Day, A. I., Blanch, R. J., Arnold, A. P., Lorenzo, S., Lewis, G. R. & Dance, I. (2002). Angew. Chem. Int. Ed. 41, 275-277.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Freeman, W. A., Mock, W. L. & Shih, N. Y. (1981). J. Am. Chem. Soc. 103, 7367-7368.
- Kim, J., Jung, I.-S., Kim, S.-Y., Lee, E., Kang, J.-K., Sakamoto, S., Yamaguchi, K. & Kim, K. (2000). J. Am. Chem. Soc. 122, 540-541.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2007). E63, o4885 [doi:10.1107/S1600536807060114]

1,4-Bis(4-nitrophenoxy)butane

Q.-L. Zhang, Y.-C. Zhao, Y.-Q. Zhang, S.-F. Xue and Z. Tao

Comment

As part of our ongoing investigation on bibenzene compounds, we present a compound(I) containing multiple functional groups that can develop strong intermolecular interactions with cucurbit[n]urils (CB[n]) (Freeman *et al.*, 1981; Day & Arnold, 2000; Day *et al.*, 2002; Kim *et al.*, 2000).

The crystal structure of the title compound (I) is shown in Fig.1. The molecular is centro-symmetric, the middle point of the C8—C8ⁱ bond is located on an inversion center [symmetry code: (i) -x, -y, -z + 1]. The two parallel phenyl rings were linked by ethereal chain forming a non-coplanar structure. The molecules arranges in a step shape like by C—H··· π intermolecular π - π stacking between adjacent pyridine rings, with the C7—H7B···Cg1ⁱⁱ angle of 144.30 °, H7B···Cg1ⁱⁱ distance of 2.9713 Å, C7···Cg1ⁱⁱ distances of 3.801 (2) Å, and Cg1···Cg1ⁱⁱⁱ distances of 3.7687 (12) Å. Cg1 is the centroid of the C1–C6-benzene ring [symmetry codes: (ii) 1/2 - x, -1/2 + y, 1/2 - z, (iii) 1 - x, 1 - y, 1 - z].

Experimental

p-toluenesulfonyl chloride (7.62 g, 40 mmol) was added slowly, whilst stirring, to a pyridine solution (50 ml) containing 1,4-butadinol (1.8 g, 20 mmol). The mixture was stirred for about 4 h in the range of 268 K – 278 K. Water(40 ml) was added to the resulting solution, the precipitate was collected by filtration, the solid product was crystallized using ethanol. The solid product (6.85 g, 20 mmol) dissolved in DMF (100 ml) containing K₂CO₃ (2 g), *p*-nitrophenol (0.54 g, 4 mmol) was added slowly, to the DMF (100 ml) solution, and the mixture was heated at 353 K for 24 h, and then the solvent was removed into water and filtered, the residue was washed with water. The solid product was dissolved in 40 ml e thanol. Single crystals of (I) were obtained after three days.

Refinement

All H atoms were placed in calculated positions and refined as riding, with C—H = 0.93–0.97 Å, and $U_{iso}(H) = 1.2U_{eq}(C,N)$.

Figures

Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) -x, -y, -z + 1].

1,4-Bis(4-nitrophenoxy)butane

Crystal data C₁₆H₁₆N₂O₆

$M_r = 332.31$
Monoclinic, $P2_1/n$
Hall symbol: -P 2yn
a = 7.1273 (5) Å
b = 8.7534 (7) Å
c = 12.8912 (10) Å
$\beta = 99.516 \ (6)^{\circ}$
$V = 793.19 (10) \text{ Å}^3$
Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer	1408 independent reflections
Radiation source: fine-focus sealed tube	1043 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.032$
T = 293(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.8^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2005)	$h = -8 \rightarrow 8$
$T_{\min} = 0.976, \ T_{\max} = 0.988$	$k = -10 \rightarrow 10$
5846 measured reflections	$l = -15 \rightarrow 15$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.045$	$w = 1/[\sigma^2(F_o^2) + (0.0647P)^2 + 0.1309P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.134$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 1.09	$\Delta \rho_{max} = 0.16 \text{ e} \text{ Å}^{-3}$
1408 reflections	$\Delta \rho_{min} = -0.15 \text{ e } \text{\AA}^{-3}$
110 parameters	Extinction correction: SHELXL97 (Sheldrick, 1997), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.014 (4)

 $D_{\rm x} = 1.391 {\rm Mg m}^{-3}$ Mo Kα radiation $\lambda = 0.71073 \text{ Å}$

 $\theta = 2.8 - 25.0^{\circ}$ $\mu = 0.11 \text{ mm}^{-1}$ T = 293 (2) KPrism, colourless $0.23 \times 0.16 \times 0.11 \text{ mm}$

Cell parameters from 1408 reflections

methods

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.4995 (3)	0.5527 (2)	0.35002 (14)	0.0519 (5)
C2	0.3176 (3)	0.5840 (2)	0.36693 (16)	0.0589 (6)
H2	0.2749	0.6843	0.3674	0.071*
C3	0.5641 (3)	0.4051 (2)	0.34752 (15)	0.0571 (6)
Н3	0.6865	0.3860	0.3346	0.069*
C4	0.2001 (3)	0.4653 (2)	0.38298 (16)	0.0586 (6)
H4	0.0769	0.4853	0.3943	0.070*
C5	0.4468 (3)	0.2852 (2)	0.36426 (15)	0.0537 (5)
Н5	0.4900	0.1850	0.3633	0.064*
C6	0.2638 (3)	0.3154 (2)	0.38251 (14)	0.0498 (5)
C7	0.1989 (3)	0.0542 (2)	0.42172 (17)	0.0587 (6)
H7A	0.3053	0.0525	0.4793	0.070*
H7B	0.2388	0.0081	0.3605	0.070*
C8	0.0334 (3)	-0.0313 (3)	0.45115 (16)	0.0636 (6)
H8A	0.0690	-0.1376	0.4631	0.076*
H8B	-0.0714	-0.0273	0.3927	0.076*
N1	0.6235 (3)	0.6788 (2)	0.33313 (15)	0.0683 (6)
01	0.13674 (19)	0.20758 (17)	0.39908 (11)	0.0630 (5)
O2	0.5651 (3)	0.8097 (2)	0.33911 (15)	0.0893 (6)
O3	0.7805 (3)	0.6492 (2)	0.31313 (18)	0.1070 (8)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic	displacement	parameters	$(Å^2)$
		P	(/

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0571 (12)	0.0525 (13)	0.0450 (11)	-0.0092 (10)	0.0049 (8)	0.0021 (9)
C2	0.0711 (14)	0.0473 (13)	0.0580 (12)	0.0057 (10)	0.0101 (10)	0.0030 (9)
C3	0.0487 (11)	0.0647 (15)	0.0593 (13)	-0.0031 (10)	0.0127 (9)	-0.0019 (10)
C4	0.0556 (12)	0.0603 (14)	0.0627 (12)	0.0055 (11)	0.0185 (9)	0.0058 (11)
C5	0.0553 (12)	0.0481 (12)	0.0596 (12)	-0.0014 (10)	0.0151 (9)	-0.0006 (10)
C6	0.0530 (11)	0.0541 (13)	0.0437 (10)	-0.0047 (9)	0.0123 (8)	0.0048 (9)
C7	0.0695 (13)	0.0519 (14)	0.0573 (12)	-0.0054 (10)	0.0179 (10)	0.0012 (10)
C8	0.0812 (15)	0.0584 (14)	0.0553 (12)	-0.0180 (12)	0.0231 (10)	-0.0042 (10)
N1	0.0707 (13)	0.0611 (14)	0.0703 (12)	-0.0118 (10)	0.0036 (10)	0.0042 (10)
01	0.0562 (9)	0.0590 (10)	0.0767 (10)	-0.0052 (7)	0.0196 (7)	0.0153 (7)
O2	0.0978 (13)	0.0600 (12)	0.1059 (14)	-0.0131 (10)	0.0046 (10)	0.0019 (10)
O3	0.0726 (12)	0.0928 (15)	0.161 (2)	-0.0150 (11)	0.0339 (12)	0.0196 (13)
Geometric po	arameters (Å, °)					
C1—C3		1.374 (3)	С6—	01	1.34	49 (2)

supplementary materials

C1—C2	1.378 (3)	C7—O1		1.429 (2)
C1—N1	1.453 (3)	С7—С8		1.497 (3)
C2—C4	1.372 (3)	С7—Н7А		0.9700
С2—Н2	0.9300	С7—Н7В		0.9700
C3—C5	1.381 (3)	C8—C8 ⁱ		1.520 (4)
С3—Н3	0.9300	C8—H8A		0.9700
C4—C6	1.389 (3)	C8—H8B		0.9700
C4—H4	0.9300	N1—O3		1.217 (3)
C5—C6	1.388 (3)	N1—O2		1.226 (3)
С5—Н5	0.9300			
C3—C1—C2	121.23 (19)	C5—C6—C4		119.86 (18)
C3—C1—N1	119.76 (19)	O1—C7—C8		106.91 (17)
C2—C1—N1	119.0 (2)	O1—C7—H7A		110.3
C4—C2—C1	119.2 (2)	С8—С7—Н7А		110.3
C4—C2—H2	120.4	O1—C7—H7B		110.3
C1—C2—H2	120.4	С8—С7—Н7В		110.3
C1—C3—C5	119.82 (19)	H7A—C7—H7B		108.6
С1—С3—Н3	120.1	C7—C8—C8 ⁱ		113.4 (2)
С5—С3—Н3	120.1	С7—С8—Н8А		108.9
C2—C4—C6	120.44 (19)	C8 ⁱ —C8—H8A		108.9
С2—С4—Н4	119.8	С7—С8—Н8В		108.9
С6—С4—Н4	119.8	C8 ⁱ —C8—H8B		108.9
C3—C5—C6	119.44 (19)	H8A—C8—H8B		107.7
С3—С5—Н5	120.3	O3—N1—O2		123.1 (2)
С6—С5—Н5	120.3	O3—N1—C1		118.3 (2)
O1—C6—C5	124.59 (19)	O2—N1—C1		118.6 (2)
O1—C6—C4	115.54 (17)	C6—O1—C7		119.74 (16)
C3—C1—C2—C4	0.9 (3)	C2—C4—C6—C5		-0.9 (3)
N1—C1—C2—C4	-179.95 (18)	O1—C7—C8—C8 ⁱ		-61.9 (3)
C2—C1—C3—C5	-1.3 (3)	C3—C1—N1—O3		2.7 (3)
N1—C1—C3—C5	179.57 (18)	C2-C1-N1-O3		-176.4 (2)
C1—C2—C4—C6	0.2 (3)	C3-C1-N1-O2		-177.66 (19)
C1—C3—C5—C6	0.6 (3)	C2-C1-N1-O2		3.2 (3)
C3—C5—C6—O1	179.52 (18)	C5-C6-O1-C7		13.9 (3)
C3—C5—C6—C4	0.5 (3)	C4—C6—O1—C7		-167.07 (17)
C2—C4—C6—O1	180.00 (18)	C8—C7—O1—C6		172.01 (17)
Symmetry codes: (i) $-x$, $-y$, $-z+1$.				
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	D—H··· A
C7—H7B…Cg1 ⁱⁱ	0.97	2.97	3.801 (2)	144

Symmetry codes: (ii) -x+1/2, y-1/2, -z+1/2.

